Traps for the Unwary Subsurface Geoscientist

ashley.francis@sorviodvnvm.co.uk

http://www.sorviodvnvm.co.uk

Presented at SEG Development & Production Forum,
24-29th June 2001, Taos, New Mexico, USA
Role of the Earth Scientist

• Selection of an appropriate method to predict the unknown value of an attribute at an unmeasured location.
 — Linear regression
 — Mapping (by hand, triangulation, kriging etc)

• Geologist
 — Maps of reservoir properties

• Geophysicist
 — Maps of structure, facies architecture and attributes

• Petrophysicist
 — Predictions of hydrocarbon pore volume and permeability
1. DETERMINISTIC MAPS
3 Types of Model - Deterministic and Stochastic

• Deterministic
 – A model from which predictions are determined directly via a functional relationship.
 – E.g. Darcy’s Law, chemical reaction rate, laws of motion

• Best Estimate
 – A model which minimises the prediction error.
 – Kriging, regression models, Wyllie’s Equation.

• Stochastic
 – A model which generates non-unique solutions.
 – A model which honours higher order statistics.
Best Estimate vs Stochastic

- These are complementary. Choice depends on the answers required
 - Best estimate for prediction/prognosis (linear problems)
 - Stochastic for volumes/connectivity/fluid flow behaviour (non-linear problems)
- The best estimate is the average of the (infinite) set of realisations.
- Different best estimate cases are NOT realisations
- In geostatistics, a spatial best estimate is called kriging - a minimum variance of error
Kriging = Mean of Realisations

\[\frac{1}{n} \times \sum_{i=1}^{i=n} \]
2. THE DATA
Linear Regression and Cutoffs

- Equation is best predictor of permeability from porosity (under certain assumptions)
- Cutoff 1mD = 9.5% porosity
- Porosity cutoff (B+D):
 - 92.5% net
- Permeability cutoff (A+B):
 - 82.5% net
- It is only correct to do this if $r \approx 1$!
- Cutoff calculations require higher order statistics to be honoured
No cutoffs!

- Cutoffs are wrongly used for estimating
 - Porosity
 - Net:Gross
 - Net pay
 - Saturations
 - Permeability
 - Gross rock volume

- Cutoffs on best estimates = BIASED ESTIMATES

- Cutoff calculations should only be applied to realisations
 - Simulated using geostatistics
 - Actual exhaustive subsurface measurements
Is it valid to map…?

- Depth ... ✓
- Time ... ✓
- Velocity ✓
- Thickness ✓
- Permeability ✓ (If log transformed)
- Porosity ✗
- Net:Gross ✗
- Saturation ✗
Average Net:Gross

• Well #1
 — N:G = 20%

• Well #2
 — N:G = 50%

• Therefore average N:G
 — = (50 + 20)/2
 — = 35% ✗

• THIS IS WRONG!

• Well #1
 — Gross thickness = 10 m
 — Net thickness = 2 m

• Well #2
 — Gross thickness = 40 m
 — Net thickness = 20 m

• Therefore:
 — Total net thickness = 22 m
 — Total gross thickness = 50 m

• Average N:G = 44% ✓
3. THE EXPERIMENTAL VARIOGRAM
A “Good” Variogram

Webster and Oliver (1992)

Variograms from 49 points on a 7 x 7 grid at 15 unit intervals

Variograms from 225 points on a 15 x 15 grid at 7 unit intervals
Variogram of 7 wells

![Graph of a variogram with distances on the x-axis and semivariogram values on the y-axis. The graph shows points for tail, phiH, head, phiH, and direction 1.]
4. THE VARIOGRAM MODEL
Key Components of Variogram Model

- Slope at the origin (model type)
- Nugget effect
- Range
- Sill
- Anisotropies
Comparison of Kriging Different Variogram Model Types

Exponential Spherical Gaussian

(Range = 38 nodes)
Comparison of Realisations Different Variogram Model Types

Exponential Spherical Gaussian

(Range = 38 nodes)
5. THE FASHIONABLE OBJECT
Reservoir Models Today

• Too big, too complex, too ambitious
 – Build simple, generic models
 – Sector models
 – Focus on flow units, not facies

• Finished Late, never updated, too few realisations

• Objects only, SIS only, TG only: algorithm fixation
 – Consider relevance of different methods to model the problem at hand
 – SIS and TG are the “geostatisticians choice”
 – Objects are the “geologists choice”
 – Parameterising objects is difficult from well data
Facies Models

• Indicator/Truncated Gaussian (Pixel) methods
 — Spatial model honoured independently for each facies ✓
 — Sound theory of spatial correlation ✓
 — Any facies organisation ✓
 — Do not look very “AAPG Bulletin” ❌
 — Entropy too high? ❌

• Object Models
 — Weak spatial theory. ❌
 — Trivial best estimate equivalent is average (stationary) N:G ❌
 — Parameters estimated from analogues/surmise ❌
 — Entropy ok ✓
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Type</td>
<td>Low sinuosity Channel</td>
</tr>
<tr>
<td>Shape</td>
<td>Half-cylinder</td>
</tr>
<tr>
<td>Thickness</td>
<td>Triangular</td>
</tr>
<tr>
<td>Width</td>
<td>Expression Thickness * 25</td>
</tr>
<tr>
<td>Orientation</td>
<td>Triangular</td>
</tr>
<tr>
<td>Amplitude</td>
<td>Expression</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Triangular</td>
</tr>
<tr>
<td>Stop Criterion</td>
<td>Volume</td>
</tr>
<tr>
<td>Branch Points</td>
<td>Uniform</td>
</tr>
<tr>
<td>Branch Location</td>
<td>Uniform</td>
</tr>
<tr>
<td></td>
<td>Width</td>
</tr>
</tbody>
</table>

- **Thickness**: 2 – 4 – 10 m
- **Width**: Thickness * 25
- **Orientation**: 10 – 50 – 90
- **Amplitude**: Width
- **Wavelength**: 1000 – 3000 - 5000
- **Stop Criterion**: 26 %
- **Branch Points**: 10 – 20/1000
- **Branch Location**: 0 - default
Reservoir Model Weaknesses

- All effort is focussed on lithofacies
- Porosity is often kriged
- Coupling of porosity and permeability fields ignored
- Outcrop analogues are a poor substitute for multipoint statistics.
 - All projects use the same channel width/thickness references
 - Not enough outcrop exposure/study
 - Well statistics are censured
- More use of shallow, high resolution 3D seismic
6. BEYOND THE VARIOGRAM
Entropy

- Entropy $H(X)$ is a statistic that quantifies the intrinsic variability of some variable X and can be computed from the pdf $p(X)$:

$$H(X) = -\sum_{i} p(x_i) \log[p(x_i)]$$

- Consider a categorical value $X = \{\text{shale}, \text{sand}\}$
 - If $P(X) = \{0.5, 0.5\}$ then $H = 0.693$
 - If $P(X) = \{0.9, 0.1\}$ then $H = 0.325$

- If entropy is reduced, then there is now less disorder, less uncertainty and therefore more predictability

Muikerji et al (2001)
Entropy

• Consider a univariate variable $X = \{-2, -1, 0, 1, 2\}$

• If $P_1(X) = \{0.03, 0.44, 0.06, 0.44, 0.03\}$
 — Variance = 1.12
 — Entropy = 1.10

• If $P_2(X) = \{0.09, 0.20, 0.42, 0.20, 0.09\}$
 — Variance = 1.12
 — Entropy = 1.44

• Variance is a measure of deviation from central tendency and is not always sensitive to uncertainty. P_1 and P_2 have the same variance but P_2 has larger entropy and is therefore more uncertain
 — after Mukerji et al (2001)
7. THE TREND

(Getting the Drift)
Variography
Normalised Acoustic Impedance

\[\gamma \]

Distance

Semivariogram
tail:NormAI
Re head:NormAI
Re direction 1

\[0.0000 \]
\[0.0050 \]
\[0.0100 \]
\[0.0150 \]
\[0.0200 \]
\[0.0250 \]

Distance

0. 2000. 4000. 6000. 8000. 10000.
Petroleum Case Study
07 Wells
Variogram with Trend

Seismic TWT

Easting
Northing

0 10360
0 10360

688.000 708.000 728.000 748.000
Variogram with Trend

\[\gamma \]

Distance

Semivariogram tail:TWT ms head:TWT ms direction 1

\[\begin{array}{cccc}
0. & 4000. & 8000. & 12000. \\
0. & 500. & 1000. & 1500. & 2000.
\end{array} \]
Explanation of Stationarity

Stationary Stochastic Process

<table>
<thead>
<tr>
<th>6.43</th>
<th>9.07</th>
<th>7.83</th>
<th>0.74</th>
<th>8.95</th>
<th>9.24</th>
<th>6.64</th>
<th>9.04</th>
<th>2.96</th>
<th>3.63</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.88</td>
<td>9.12</td>
<td>9.61</td>
<td>4.11</td>
<td>3.58</td>
<td>6.54</td>
<td>1.78</td>
<td>1.17</td>
<td>8.61</td>
<td>6.37</td>
</tr>
<tr>
<td>8.58</td>
<td>3.31</td>
<td>1.04</td>
<td>2.61</td>
<td>8.01</td>
<td>7.71</td>
<td>0.58</td>
<td>6.23</td>
<td>9.18</td>
<td>1.22</td>
</tr>
<tr>
<td>6.52</td>
<td>0.56</td>
<td>3.73</td>
<td>2.86</td>
<td>4.52</td>
<td>9.61</td>
<td>9.04</td>
<td>9.42</td>
<td>1.86</td>
<td>1.25</td>
</tr>
<tr>
<td>1.37</td>
<td>3.23</td>
<td>6.68</td>
<td>5.16</td>
<td>5.49</td>
<td>4.49</td>
<td>7.42</td>
<td>5.49</td>
<td>5.51</td>
<td>6.73</td>
</tr>
<tr>
<td>0.16</td>
<td>4.51</td>
<td>5.89</td>
<td>8.44</td>
<td>6.35</td>
<td>1.13</td>
<td>4.33</td>
<td>5.89</td>
<td>8.94</td>
<td>1.48</td>
</tr>
<tr>
<td>8.80</td>
<td>1.91</td>
<td>2.71</td>
<td>2.50</td>
<td>2.21</td>
<td>7.41</td>
<td>7.36</td>
<td>0.23</td>
<td>1.69</td>
<td>3.04</td>
</tr>
<tr>
<td>9.64</td>
<td>2.19</td>
<td>5.92</td>
<td>2.06</td>
<td>1.71</td>
<td>5.84</td>
<td>1.83</td>
<td>2.79</td>
<td>5.52</td>
<td>7.86</td>
</tr>
<tr>
<td>4.08</td>
<td>5.84</td>
<td>3.50</td>
<td>4.81</td>
<td>0.78</td>
<td>1.52</td>
<td>2.46</td>
<td>4.07</td>
<td>8.71</td>
<td>7.54</td>
</tr>
<tr>
<td>9.64</td>
<td>6.07</td>
<td>2.56</td>
<td>9.76</td>
<td>2.53</td>
<td>3.95</td>
<td>2.74</td>
<td>2.03</td>
<td>6.24</td>
<td>3.68</td>
</tr>
</tbody>
</table>

- Stationarity is a property of the *model* not of the data
- Stationarity is a *decision*
Trend or Stationary Time Series?

![Graph showing temperature anomaly over time](image)

- **Global Temperature** (meteorological stations)
- **Temperature Anomaly (°C)**
 - Annual Mean
 - 5-year Mean

Time periods: 1880 to 2000
1000 year climate

- From the Intergovernmental Panel on Climate Change report 1995 (which stated there is “a discernible human influence on global climate”)
3000 year climate

8. WORST CRIMES

(Some conclusions)
Worst Crimes

• Confusing maps with reality
 – Subsurface maps are representing the local expectation, they are a mathematical construct
 – Cartographers represent on a sheet of paper *that which they already know*
 – Geologists, geophysicists and petrophysicists *make predictions of attributes at unmeasured locations*

• Cutoff calculations should not be applied to estimates, ONLY to realisations

• There is no “Quantification of Uncertainty”!

• We can explore uncertainty with geostatistics.
Unknown uncertainty

- Unknown unknowns
- “How can we know that which we do not know?”
- “And having discovered something new, how can we be sure that that is what we did not know?”
 — Socrates